AAO系统各段污水各个指标的详细分析:
AAO系统全流程的COD
从曲线中看出:进水COD350mg/l左右,厌氧1段:100mg/l左右,厌氧2段:75左右,缺氧1段:50-55mg/l,缺氧2段:55-60mg/l,好氧1段:40mg/l左右,好氧2段出水在25mg/l左右。
按正常操作外回流50%,内回流150~300%,原水:350mg/l,外回流COD:25mg/l,混合后COD:242mg/l,厌氧段2出水为75,去除COD个数为167个(较进水为275个),去除率高达70%,这也印证了微生物快速吸附COD,一部分被PAOs形成PHA贮存在体内,一部分被GAOs吸附。
缺氧段进水COD:75mg/l,内回流COD:25mg/l,混合后37mg/l,但缺氧段出水的COD反而高了,在50-60mg/l之间,主要原因是吸附的COD在后续时间内会再次释放到水体里,导致升高,同时也出现了反硝化除磷的情况,即DPB吸附的碳源进行反硝化除磷,在此段不停发生反硝化作用,消耗碳源,但从去除率看却是负的,这就再次证明了污泥吸附的COD随着时间延长会被解吸出来的。
缺氧段出水到好氧段末端,消减个数为35个(较进水为130个左右)左右,主要为异养菌的代谢作用。 从COD的处理的整个流程看,好氧段实际去除的COD在130mg/l左右,而厌氧段的去除以吸附为主,并未实际去除,这也是碳磷高效分离所利用的原理;缺氧段去除的COD大约为195mg/l,主要以反硝化为主。
AAO系统全流程的氨氮
从曲线中看出:进水氨氮52mg/l,厌氧1段:32mg/l,厌氧2段:28mg/l,缺氧1段:12mg/l,缺氧2段:11mg/l,好氧1段:10mg/l,好氧2段:3mg/l,好氧3段出水1mg/l以下。
按正常操作外回流比50%,内回流比150~300%,具体分析:进水52,回流1,混合后35(1.5倍水量),厌氧段去除个数在7个左右,分析是在厌氧段基本上没有COD的分解,那为何会有7个的去除量呢?
缺氧段12左右(4.7倍水量),折算下来氨氮52,缺氧段反而比厌氧段高出7个左右,说明厌氧段的去除量同样是不真实的,具体分析下来同样存在氨氮被污泥吸附的情况,只是吸附量并不大,但缺氧段是存在一定的去除量的,来源于反硝化菌的同化作用,但去除量不大,算下来只有5个左右,进入好氧段后,好氧1降解量非常少,而在好氧段2后就开始快速降解,好氧3即已经达标,对比COD,好氧2的COD已经接近出水值,也验证了先进行COD去除,再进行硝化的理论。
氨氮的降解情况看,同化作用只占5个作用,其余的都是在好氧段去除,而一般是在好氧中前段开始降解。 从氨氮整个降解流程看,整个好氧系统的氨氮值其实是非常低的,因此目前很多水厂,设置了在线氨氮仪,利用测定好氧段某个位置的氨氮值来判断曝气终点,从而达到节能的目的。
AAO系统全流程的硝态氮
从曲线中看出:进水、厌氧1段、厌氧2段几乎不存在,缺氧区硝态氮在3以内、缺氧硝态氮在2mg/l左右。好氧1硝态氮在7.5mg/l,好氧2段硝态氮在12mg/l左右,好氧中段在13mg/l左右,好氧末端1mg/l2左右,出水的TN即在15mg/l以内。
亚硝态氮整个流程段基本不存在,只有在好氧1和好氧2能检出,在2mg/l以内,对比之前的氨氮情况,说明硝化过程中是同时存在亚硝态氮和硝态氮的,而且是存在一定方法实现亚硝态氮积累的。
在控制系统的TN过程中,缺氧区出水的硝态氮和好氧区出水的TN或硝态氮是关键的检测指标,通过缺氧区出水的硝态氮可以判断内回流比是否合适,如果缺氧区出水的硝态氮偏高,那出水的TN也会超标,从整个流程看,好氧段也会实现TN的消减,可能存在同步硝化反硝化作用,因此当缺氧区容积成为限制因素的情况下,可以合理利用好氧区的DO,实现一定程度上的同步硝化反硝化。
AAO系统全流程的TP
从曲线中看出:进水TP在5mg/l,厌氧1段:25mg/l,厌氧2段:30mg/l,缺氧池1段:5mg/l,缺氧池2段:2.5mg/l,到好氧池含量很少了,直至出水TP应该在1以下了。如果控制合理有可能达到0.5mg/l的一级A的排放标准。
从进水到厌氧1段TP增加很大,在不考虑污泥回流比的情况下,从5mg/l涨到23mg/l左右,到厌氧2段增加到30mg/l,说明了聚磷菌在厌氧条件下迅速的释磷,数据证明了厌氧条件下聚磷菌的释放了磷酸盐,通过磷释放的能量来吸收污水中的VFA,为好氧吸磷储存能量!
而在缺氧池TP的急剧下降,按照正常内回流比的最大值300%,TP混合后大约10mg/l左右,而TP在缺氧池中连续下降,TP从10mg/l降至2mg/l左右,说明了聚磷菌在缺氧环境中发生了反硝化吸磷。
通过聚磷菌在曝气池继续过量吸磷,保证了出水TP尽量降低,但是污水处理中TP通过生化处理往往很难达标排放,这就用到了化学除磷!