电力、钢铁等行业的工业烟气的排放是我国大气第一大污染源,减排压力巨大,除尘器是整个工业烟气超净治理的工艺路线中“龙头”。大型烧结机烟尘比电阻高、颗粒细、粒径小、粘度大等,是目前电除尘技术亟待解决的挑战和难题。针对上述问题,北京力博明科技发展有限公司联合国内高校,另辟蹊径,从“板极配合”角度对电除尘器内部流场及电场进行设计和优化,突破静电除尘器除尘效率低的瓶颈,研发出“均流式静电除尘器”技术。该技术采用计算机模拟联合智能优化算法进行方案设计,确定导流和扰流部件几何形状和在电场内的排布方式、电除尘器入口气流分布板的气流分布方案,从而延长受尘时间,提高有效利用除尘面积,增大粉尘颗粒受力和团聚吸附,显著提高静电除尘效率。均流静电除尘技术在具备优异除尘性能的同时,在经济性上也极具竞争优势,与传统电除尘器改造比,改造方案成本可降低约20%。目前均流式电除尘器技术已在1家电厂和10余家钢厂得到应用。均流静电除尘器产业化项目显著提高了我国电除尘器技术水平,为我国工业烟气污染治理提供了新的解决方案。
关键词:均流式电除尘技术;烧结机烟气;电除尘器
1 除尘背景
在电力行业实现超低排放改造后,钢铁行业的超低排放已迫在眉睫。环保部发布的《关于推进实施钢铁行业超低排放的意见》提出:到2020年底前,重点区域钢铁企业超低排放改造取得明显进展,力争60%左右的产能完成改造,有序推进其他地区钢铁企业超低排放改造工作;到2025年底前,重点区域钢铁企业低排放改造基本完成,全国力争80%以上产能完成改造。除尘器是整个工业烟气超净治理的工艺路线中“龙头”,对后续脱硫和脱硝影响巨大。烧结机头烟尘比电阻高、颗粒细、粒径小、粘度大等,是目前电除尘技术面临的挑战和难题。
2 烧结机机头除尘难点
由于受到生产工艺条件的限制,大型烧结机烟尘比电阻高、阵发性负荷、烟气成分复杂,造成部分电除尘器排放不达标,尤其是烧结机机头的粉尘比电阻高、颗粒细、粒径小、粘度大,是电除尘技术难点,也成为选型设计首要考虑的因素。烧结机机头烟尘特性见表1。
表1 烧结机机头烟尘特性
通过以上数据分析,烧结机机头粉尘难处理的原因有以下几点:
(1)烧结机负压大,设备漏风率高,一大部分空气未通过烧结料层,使烧结烟气量大大增加;
(2)粉尘粒径细;
(3)粉尘比电阻高;
(4)粉尘含水分大;
(5)粉尘轻,粘性大,呈棉絮状,清灰困难。
3 均流式电除尘技术在烧结机头除尘上的优势
常规静电除尘器在烧结机头除尘中应用较多,但同时也存在一些不可避免的技术难点:
(1)高比电阻、微细粉尘难收集;
(2)烧结机头粉尘粘性大,清灰困难以及清灰带来的二次扬尘问题;
图1静电除尘器多维-多尺度-多物理场仿真建模
北京力博明科技有限公司攻克了常规静电除尘器存在的技术难点,发明出高效、稳定拥有独立知识产权的均流式电除尘技术(专利号:ZL 201510155007.5)。如图1所示,该技术源于该公司在计算流体力学(CFD)方面的技术优势,借助大型超级计算中心,辅助先进的优化算法,在电除尘提效优化模式上,对现有电除尘器电场和流场进行优化仿真,提出了最优的阳极板结构和板极间配合模式,使得电除尘性能得到大幅度提升。
3.1解决高比电阻、微细粉尘难收集的问题
(1)更换阳极板,扩大比电阻粉尘的最佳适宜范围
将常规电除尘器中的阳极板换为北京力博明自主研发并获得专利的新型均流式阳极板,一体化通透式阳极板(见图2),该阳极板不仅表面积大,对粉尘的捕捉、吸附和除尘的效率均有极大提高,有效收尘面积为传统极板的1.3倍,并且受粉尘比电阻影响小,烟气流通性也有所改善。
图2 通透型阳极极板
图3粉尘颗粒受力及趋近速度
如图3所示,通过流场优化,利用F1将粉尘颗粒驱动到阳极板表面附近,增加颗粒碰撞阳极板的概率,也降低颗粒运动过程的粘性耗散,具有更高的撞击速度(U2>>U1)。增加各种扰流部件(以压降最小为优化目标),延长颗粒在本体内的停留时间和行走路径,增大荷电概率和被铺集的概率。
(2)设置卡门涡街装置实现高比电阻、微细粉尘颗粒聚合
图4 均流式除尘器卡门涡街效应
如图4所示,电场内设置卡门涡街装置,荷电颗粒通过该装置时,对动压、静压进行优化分布,使含粉尘气体能充分流经阳极板,同时使烟气在经过挡板后产生卡门涡街,卡门涡街形成的湍流使这些微细粉尘颗粒聚合成较大粉尘颗粒,继而被捕集。
3.2 解决烧结烟气粉尘粘性大,清灰困难的问题
北京力博明从以下几个方面对解决烧结烟尘的清灰困难问题做了优化设计:
(1)阴阳极振打结构:阳极采用顶部和底部侧面传动绕臂式振打,阴极采用双层侧部振打,这样的振打结构振打力度较强,容易满足清灰需要(见图5-6);
(2)辅助振打:根据项目情况辅助使用声波清灰或脉冲清灰,配合一体化通透式阳极板,改善清灰效果;
(3)进行清灰振打实验,抑制二次扬尘:考虑到烧结机头电除尘器几个末电场的粉尘既细又轻,为尽量保证粉尘呈层饼状落下又要尽量避免二次飞扬,北京力博明进行了清灰振打实验,在调试、控制时末电场的振打频率通过微机控制可调到更科学合理的数值。
4 应用案例
北京力博明成功改造的几个案例(见表1),现均已正常运行,运行二次电压为:45 kV-60 kV,运行二次电流为:300-800 mA。
以南阳市汉冶特钢265m2烧结机机头电除尘技术改造为例,该烧结机配套2*260m2的电除尘器,改造前烧结机配套的1#电除尘器不能正常工作,排放严重超标(见图7-图8)。应用户要求,且排放达到国家标准,改造完成后保证电除尘器出口排放浓度<30 mg/Nm3。基本工艺数据如下:入口烟气,870000 m3/h;入口烟气温度,120-150℃;入口烟气负压,-18000 Pa。
本次电除尘器改造主要基于三点:
1)烟道入口做气流模拟试验,根据试验结果调整更换气流分布板,使得烟气均匀地流过电场,充分发挥电场的工作能力;
2)对前三电场掏空大修,阳极装配系统、阴极装配系统、阴阳极振打系统、顶盖、侧部人孔门、卸灰系统、电加热管、高压电源系统等换新;
3)将第四电场阳极板更换为均流式极板,阴极线更换为RS新型芒刺线,其它和前三电场相同全部换新,根据CFD流场模拟,加装卡门涡街装置使第四电场达到最佳效果。
改造过程部分图片如下:
该设备改造在2020年3月份项目完工,运行后进行多次除尘性能实测,测试出口排放浓度均小于30 mg/Nm3,证明了所改进三项技术措施的可行性。
5 结束语
结合北京力博明成功改造和新建除尘器的案例和用户反馈,均流式电除尘技术在烧结机机头烟尘治理上的应用是成功有效的,除尘器出口粉尘浓度均在50mg/Nm3以下,均流式电除尘技术大大提高了烧结机头烟气的除尘效率。通过由中国环境科学学会组织的成果鉴定会,认为该技术为实施烟尘超低排放提供了一种新技术,该成果整体上达到国际先进水平,一致同意通过鉴定。