1引言
污泥是污水处理过程中的必然产物,主要由多种菌胶团与其吸附的有机和无机物集合体所组成.随着我国污水处理能力及处理率的快速增长,产生了大量剩余污泥,污泥处置将成为我国一个更加突出的实际环境问题.由于污泥中含有大量的有机质和养分元素,因此,污泥农用有望成为一种具有重要前景的处置方法.然而,污泥中可能同时含有大量病原菌、有机污染物和重金属等污染物质,在农用过程中重金属会释放并进入土壤生态环境,重金属作为一种持久性潜在有毒污染物,一旦进入环境后,因不能被生物降解而长期存在于环境中且不断积累,致使重金属在土地农用过程中可能产生生态危害风险,从而限制其大规模土地利用.因此,对污泥中重金属污染特征进行研究,并评价潜在风险及健康风险应该引起高度重视.
目前,有关污泥中重金属的研究主要集中在污染水平、赋存形态及生态风险方面.例如,刘敬勇等分析了广州市城市污泥中重金属的污染特征,并评价了其生态风险;涂剑成等分析了东北地区污水处理厂污泥重金属浓度及形态,并评价了潜在生态风险;刘晓光等研究了某城市污水处理厂的剩余污泥在厌氧消化过程重金属形态转化,并分析了生物有效性;姚金铃等探讨了我国16家城市污水处理厂的重金属污染状况并与不同重金属标准进行了比较;孙西宁等研究了污泥在好氧堆肥过程中重金属形态的变化,发现堆肥有利于重金属形态的稳定.然而,关于污泥重金属健康风险的研究较少,健康风险评价主要集中在气体颗粒物及水体等方面.因此,本研究在分析重金属形态及潜在风险评价的基础上,进一步分析污泥中重金属的健康风险,以更好地评价污泥重金属污染情况,为污泥农用等资源化利用提供参考.
2材料与方法
2.1污泥样品的采集与预处理
污泥取自北京市某污水处理厂污泥脱水车间,为均匀反映污泥重金属含量情况,连续取样7d并分别标记为S1~S7.每次取样500g于聚乙烯自封袋取回,样品在通风阴凉处自然风干后混匀,用四分法多次筛选后取30g污泥样品,研磨过150μm尼龙筛(100目),装入密封袋标号备用.
2.2样品处理与测试
2.2.1含量分析
称取样品0.2g,置于聚四氟乙烯消解罐中,滴加2~3滴去离子水润湿,加6mL硝酸、6mL氢氟酸及2mL盐酸,设定微波消解程序消解,消解后在电热板上加热赶酸,冷却加1%硝酸定容至50mL,于4℃下保存待测.
2.2.2重金属形态分析方法
常用的形态分析方法包括Tessier逐级提取法和BCR逐级提取法,Tessier提取法分级更详细,但BCR提取法重现性相对较好.重金属元素化学形态分析采用欧共体修正的BCR顺序提取法:①酸可提取态:称取0.50g土壤到50mL离心管中,加入20mL0.11mol˙L-1醋酸(HOAc),室温振荡16h,在3000r˙min-1的转速下离心20min,取上清液待测,残渣留存;②可还原态:向上一步的残渣中加0.5mol˙L-1的NH2OH˙HCL溶液(盐酸羟胺)20mL,室温振荡16h,在3000r˙min-1的转速下离心20min,取上清液待测,残渣留存;③可氧化态:向上一步的残渣中加30%的H2O25mL,室温反应1h,偶尔振荡,(85±2)℃下水浴硝化1h,蒸发至体积少于2mL,补加5mLH2O2,重复上述操作,体积减少到大约1mL;冷却后加1.0mol˙L-1NH4OAc溶液25mL,室温下振荡16h,在3000r˙min-1转速下离心20min,取上清液待测,残渣留存;④残渣态:方法同全量检测方法.
2.3分析方法
2.3.1污泥重金属污染评价
单因子指数法:单因子指数法是国内外普遍采用的方法之一,是对土壤中某一污染物的污染程度进行评价,其计算公式为:
式中,Pi为土壤中污染物i的环境质量指数;Ci为污染物i的实测含量(mg˙kg-1);Si为污染物i的环境质量标准(mg˙kg-1).
内梅罗综合污染指数法:内梅罗综合污染指数法可全面反映土壤中各污染物的平均污染水平,也突出了污染最严重的污染物给环境造成的危害,其计算公式为:
式中,P为监测点的综合污染指数;Pimax为i监测点污染物单污染指数中的最大值;Piave为i监测点所有污染物单污染指数平均值.依据单因子指数法和内梅罗综合污染指数法可将土壤重金属污染划分为5个等级,具体如表1所示.
GB15618—1995土壤环境质量标准提供的土壤环境质量标准如表2所示,本次研究选用国家土壤质量Ⅰ级标准为评价标准.
2.3.2土壤重金属潜在生态风险指数计算
沉积物重金属潜在生态风险评价采用瑞典科学家Hakanson提出的评价方法,该方法综合考虑了多元素协同作用、毒性水平、污染浓度及环境对重金属污染敏感性等因素,消除了区域差异及异源污染的影响,已成为目前沉积物重金属污染质量评价应用广泛的一种方法计算公式如下:
式中,Cfi为重金属i相对参比值的污染系数;Csi为重金属i的实测含量;Cni为重金属i的评价参比值;Eri为第i种重金属环境风险指数;Tri为重金属i毒性响应系数;RI为多元素环境风险综合指数.在本研究中,8种土壤重金属毒性响应系数Tri参照文献(表3);为方便同类研究结果间比较,评价参比值Cni采用Hakanson提出的工业化前全球土壤(沉积物)最高背景值,由于Hakanson未提供元素Ni的评价参比值,用土壤质量Ⅰ级标准值替代.潜在环境风险指数评价结果分级见表4.
2.3.3重金属健康风险评价
参考土壤重金属评价模型,本研究设定2种暴露途径:①通过手-口直接摄入;②通过皮肤接触摄入.其中,手-口摄食途径和皮肤接触途径下的摄入量(AOD)计算公式分别如式(6)和(7)所示.
式中,C为污泥中重金属含量(mg˙kg-1);IR为摄取速率(mg˙d-1);CF为转换因子(kg˙mg-1);EF为暴露频率(d˙a-1);ED为暴露年限(a);BW为受体体重(kg);AT为平均作用时间(a);SA为可能接触的皮肤面积(cm2˙d-1);SL为皮肤对土壤的吸附系数(mg˙cm-2);ABS为皮肤对化学物的吸附系数.相关参数取值见表5.
毒性评估指分析受试物引起暴露人群不良健康反应的各种证据,估计暴露强度与不良反应增加的可能性和不良健康反应程度之间的关系,对人体健康危害进行定性和定量估算,分为致癌和非致癌毒性评估.
单个污染物单一暴露途径的非致癌风险以HQ表示,多污染物多途径联合非致癌风险以HI表示,计算公式分别如下:
式中,CDIij为第i种污染物第j种暴露途径的平均每日单位暴露量(mg˙kg-1˙d-1);RfDij为第i种污染物第j种暴露途径的慢性参考剂量(md˙d˙mg-1);n1为非致癌影响的污染物个数;n2为暴露途径的个数.
污染物致癌风险值则以R表示,当暴露人群处于低风险水平(估算风险值在0.01以下)时,采用线性低剂量致癌风险模型,计算公式见式(10);当暴露人群处于高风险水平(估算风险值高于0.01)时,采用一次冲击模型,计算公式见式(11).
多个污染物多种暴露途径的联合致癌风险计算公式分别如下:
本次研究相关的污染物的毒性数据主要来源于国际癌症研究机构(IARC)和世界卫生组织(WHO),As、Cd为化学致癌物,其致癌强度斜率因子(SF值)和评价模型各重金属RfD值如表6所示.
3结果与讨论
3.1污泥中重金属污染水平及形态特征分析
本研究所取污泥中重金属含量最高的元素是Zn,其含量为930.08mg˙kg-1(以干重计),重金属含量从高到低分别为Zn>Cu>Cr>Pb>As>Ni>Cd(图1).污泥中重金属含量主要影响因素包括污水来源、污水组成、污水处理工艺和水平及污泥处理技术等,其中,污水来源是重要的影响因素.本次所研究的污泥中含有一定量的重金属,因此,在污泥资源化前应充分分析污泥中重金属的特性,有针对性地采取有效的削减措施,以提高污泥的利用价值同时避免其产生环境负效应.
通过BCR连续提取法分析了污泥中重金属的形态,各重金属赋存形态比例如图2所示.从图2可以看出,污泥中不同重金属赋存形态差异较大,该污泥中残渣态比例最高的是Cr,占到79.32%;其中,残渣态比例最低的是Cd,污泥中镉的残渣态含量已经低于检测限.污泥中Cr、Pb元素含量相对较高,但二者的存在状态主要以残渣态为主.值得注意的是,重金属的活性更大程度取决于其赋存状态,不同形态的重金属生物毒性不同并能够产生不同的环境效应,重金属的赋存形态主要受到pH、有机质及酶活性的影响.样品中Zn、Cu的含量较高,且其活化状态所占比例大,因此,应重视Zn、Cu元素可能造成的环境危害.
3.2重金属污染评价分析
本次重金属污染评价研究过程中,以国家土壤环境质量Ⅰ级标准为评价标准进行污染评价,污泥中重金属污染评价指数结果如表7所示.污泥中Pb的风险指数Pi值为0.33,指数值最低且其污染等级为安全;Cr、Ni元素的风险指数Pi值均小于1,但已经达到了污染等级中的警戒限;As的Pi处于1~2之间,属于轻污染程度,Cu的Pi处于2~3之间,属于中污染程度;Cd、Zn的Pi均超过3,已经属于重污染程度.从综合污染指数方面来看,污泥中重金属综合污染指数为4.84,属于重污染水平.不同的污泥中重金属污染评价指数存在一定的差异,这主要与所处理的污水有关.本样品中重金属综合污染指数为4.84,达到了重污染水平,在资源化利用过程中应注意其可能带来的重金属风险.应该指出的是,Cd元素的环境浓度要求极为严格,污泥综合污染等级属于重污染,与Cd元素的浓度有很大的关系.
3.3重金属潜在环境风险分析
污泥中重金属的环境风险系数(Eri)及综合危害指数(RI)如表8所示,由表8可知,各重金属中环境风险系数最高的是Cd,其环境风险指数为115.50,属于极高生态风险;其次是Cu,其环境风险指数为46.97,属于高生态风险;As和Pb的环境风险指数均在20~40之间,属于较高生态风险;Zn的环境风险指数为11.63,属于中生态风险;环境风险指数小于10的重金属元素是Cr和Ni,二者属于低生态污染水平;综合风险指数为237.60,属极高生态风险.需要指出的是,本次研究为了充分保证安全性,是基于污泥独立农用进行分析的,在实际使用过程中,污泥一般作为土壤改良剂施用,因此,其可能造成的生态风险小于分析值.
3.4重金属健康风险分析
基于健康风险评价模型及相关参数指标,利用污泥中重金属检测结果对污泥的重金属健康风险进行评价,儿童健康风险评价结果与成人健康风险评价结果分别如表9和表10所示.对于目标暴露人群为儿童,以手-口摄食为暴露途径时,单一物质非致癌危害指数最高的元素是Cu,危害指数为1.21×10-1;以皮肤接触为暴露途径时,单一物质非致癌危害指数最高的元素同样是Cu,其危害指数为1.51×10-3,各重金属对非致癌风险贡献率从高到低的顺序是Cu>Cr>Zn>Pb>Ni.污泥重金属非致癌综合危害指数为2.02×10-1,致癌综合危害指数为1.44×10-4,其中,以手-口摄食为暴露途径时,其非致癌与致癌风险分别是2.00×10-1和1.42×10-4,以皮肤接触为暴露途径时,其非致癌与致癌风险分别是2.62×10-3和1.78×10-6,手-口摄食暴露途径为主要的暴露途径.本次污泥金属健康风险评价研究中,非致癌综合危害指数为1.09×10-1,并未达到非致癌风险警戒值“1”,对于儿童来说并不存在非致癌风险;污泥重金属致癌综合危害指数为1.44×10-4,超出USEPA提供的可接受区间(1×10-4~1×10-6),存在一定的致癌风险.但需要指出的是,为了揭示最大的致癌风险值,该研究是假设长期生活在布满污泥的环境中,因此,实际生活中,可能并不存在致癌风险.
当目标暴露人群为成人时,由于皮肤接触面积、摄食量及危害指数等评价指标不同,其非致癌与致癌风险评价结果也不同.对于成人而言,手-口摄食为暴露途径下,单物质非致癌危害指数最高的元素是Cu,危害指数为4.14×10-2;以皮肤接触为暴露途径时,单物质非致癌危害指数最高的元素同样是Cu,其危害指数为2.07×10-3,各重金属对非致癌风险贡献率从高到低的顺序是Cu>Cr>Zn>Pb>Ni.污泥重金属非致癌综合危害指数为7.21×10-2,致癌综合危害指数为5.13×10-5,其中,以手-口摄食为暴露途径时,其非致癌与致癌风险分别是6.86×10-2和4.89×10-5,以皮肤接触为暴露途径时,其非致癌与致癌风险分别是3.60×10-3和2.45×10-6,手-口摄食暴露途径为主要的暴露途径.本次污泥金属健康风险评价研究中,非致癌综合危害指数为7.21×10-2,并未达到非致癌风险警戒值“1”,对于成人来说并不存在非致癌风险;污泥重金属致癌综合危害指数为5.13×10-5,在USEPA提供的可接受区间1×10-4~×10-6范围之内,不存在致癌风险.通过与儿童健康风险评价结果比较可以发现,污泥对儿童来说具有更高的致癌与非致癌风险.
4结论
1)该污水处理厂污泥样品有重金属存在,其中,含量最高的元素是Zn;各重金属元素中,可提取态比例最高的元素是Ni,氧化态比例最高的元素是Cd,还原态比例最高的元素是Cu,残渣态比例最高的元素是Pb.
2)通过对污泥进行重金属污染评价发现,污泥重金属综合污染指数为4.84,属于重污染;对于各重金属单风险指数来说,Cd的风险指数最高,达到6.42,属于重污染.对污泥进行重金属潜在环境风险评价发现,污泥重金属综合风险指数为237.60,属于极高生态风险;各重金属中环境风险系数最高的是Cd,达到115.50,属于极高生态风险。
3)污泥样品中重金属对儿童和成人产生的非致癌综合危害指数分别为2.02×10-1和7.21×10-2,均低于非致癌风险警戒值“1”;致癌综合危害指数分别是1.44×10-4和5.13×10-5,其中,成人致癌风险在USEPA提供的可接受区间1×10-4~1×10-6范围内,儿童致癌风险指数超出可接受区间;手-口摄食是儿童和成人主要的暴露途径,重金属元素Cu是非致癌风险最主要的影响因子,而As是最主要的致癌风险影响因子。
原标题:干货丨污水处理厂重金属污染特点及潜在风险