以国内某电厂7台煤粉锅炉实现超低排放为指标进行燃煤电站烟气脱硝改造,采用低NOx燃烧技术和炉后选择性催化还原技术相结合的工艺,对煤粉锅炉燃烧方式、SCR脱硝系统、引风机等进行设计改造,研究了空气过量系数、反应器温度、氨氮摩尔比等对脱硝效率的影响,并对改造后系统进行调试。结果表明,温度控

首页 > 大气治理 > 脱硫脱硝 > 烟气脱硝 > 技术 > 正文

【技术汇】燃煤电站锅炉烟气脱硝改造及运行分析

2019-01-10 09:21 来源: 《能源研究与管理 》 作者: 刘小辉等

以国内某电厂7台煤粉锅炉实现超低排放为指标进行燃煤电站烟气脱硝改造,采用低NOx燃烧技术和炉后选择性催化还原技术相结合的工艺,对煤粉锅炉燃烧方式、SCR脱硝系统、引风机等进行设计改造,研究了空气过量系数、反应器温度、氨氮摩尔比等对脱硝效率的影响,并对改造后系统进行调试。结果表明,温度控制在360℃附近,过量空气系数在0.9~1.0之间,氨氮摩尔比为1.2时,SCR脱硝效率达到90%以上,烟气出口NOx质量浓度在45mg/Nm3以下,烟气出口温度为250~280℃之间,符合环保部门的排放指标。

关键词:烟气脱硝;改造;SCR;效率

据中国能源统计年鉴统计,2014年全国SO2排放总量为1974万t,NOx排放总量为2078万t。如果不合理控制NOx的排放,随着国民经济继续发展、人口增长和城市化进程的加快,未来中国NOx排放量将继续增长。按照目前的发展趋势,到2030年我国NOx排放量将达到3540万t,势必造成严重的环境影响。随着大气污染防治法规的不断推进,《锅炉大气污染物排放标准》越来越严格,大部分省市推出史上最严大气污染物排放标准,SO2不超过35mg/m3、NOx不超过50mg/m3、烟尘不超过5mg/m3,全国火电机组均在超低排放改造。本文以国内某燃煤电站为实现超低排放并达到污染物排放标准为依据,根据电厂实际情况,对煤粉锅炉及相关系统进行优化设计及改造。

1 锅炉概况

该热电厂共有7台锅炉,建有3台(1#~3#)蒸发量为150t/h的中温中压煤粉锅炉、2台(4#、5#)220t/h和2台(6#、7#)240t/h的高温高压煤粉锅炉。根据锅炉蒸发量,配套建设有3台6MW背压式汽轮发电机组、1台抽凝式12MW、2台25MW抽凝式汽轮发电机组和1台25MW抽背式汽轮发电机组。目前,燃煤热电站/热电厂7炉7机锅炉总蒸发量为1370t/h,总装机容量为105MW。7台锅炉全部建设了除尘与脱硫设施,没有脱硝设施。锅炉及配套除尘、脱硫设施及污染物排放情况如表1所示。

21.jpg

2 改造

该系统的初步设计是“煤粉锅炉采用低NOx燃烧器”和“炉后选择性催化还原法(SCR)”的混合工艺方案。在满足实际燃用煤种、锅炉最大工况(BMCR)的条件下,要求低氮燃烧器改造后的NOx质量浓度≤540mg/Nm3;SCR系统入口NOx质量浓度设计值为580mg/Nm3,还原剂采用液氨,烟气排放NOx质量浓度≤45mg/Nm3,脱硝效率≥90%。主要改造内容包括:对1#~7#锅炉中的5台锅炉实施低氮燃烧改造;在锅炉省煤器出口与空气预热器之间增加SCR反应器(共5套,每套催化剂按2+1层配置),配套建设液氨储存制备供应系统,并对锅炉钢结构实施改造;同时对锅炉燃烧器、除尘器及引风机等进行改造。

2.1低氮燃烧器

新型低NOx燃烧技术以炉内影响燃烧的两大关键过程(炉膛空间过程和煤粉燃烧过程)为重点关注对象,全面实施系统优化,达到防渣、燃尽、低NOx一体化的目的。首先将炉内大空间整体作为对象,通过炉内射流合理组合及喷口合理布置,炉膛内中心区形成具有较高温度、较高煤粉浓度和较高氧气区域,同时炉膛近壁区形成较低温度、较低CO和较低颗粒浓度的区域,使在空间尺度上中心区和近壁区特性差异化。在燃烧过程尺度上通过对一次风射流特殊组合,采用低NOx喷口或等离子体燃烧器,热烟气回流等技术,强化煤粉燃烧、燃尽及NOx火焰内还原,并使火焰走向可控,最终形成防渣、防腐、低NOx及高效稳燃多种功能的一体化燃烧技术。通过采用该技术使NOx的排放浓度降低50%~70%,实现煤粉锅炉改造后最终NOx质量浓度≤45mg/Nm3。

2.2SCR反应器

将温度低于500℃的烟气通过导流板通入带有还原剂及催化剂的垂直反应塔内,烟气中NOx与氨、尿素、碳氢化合物等还原剂在催化层中混合,在催化剂的作用下将NOx还原分解成N2和H2O。主要的化学反应为:

22.jpg

根据3#~7#机组锅炉场地的条件,除尘器进口烟道上方空间狭窄,SCR脱硝反应器布置在锅炉左侧或右侧空地上。因此1台锅炉装置1台SCR烟气脱硝系统,每套系统催化剂按2+1层设置,采用高灰型SCR布置方式。对于SCR系统的入口和出口烟道,使用新的钢结构来支撑锅炉钢架,在2个立柱之间设置非金属补偿器以进行相对隔离。SCR反应器选用蜂窝式钒钛钨催化剂,正常工况下催化剂化学寿命要求超过24000h,并且机械寿命要求在10年以上。反应器主要性能参数如表2所示。

23.jpg

2.3引风机改造

原有引风机已达到额定出力,无富余量。本次新增SCR系统和电除尘改为布袋除尘器后,其烟气系统阻力增加约2.5kPa,原有引风机压头不能满足烟气系统改造后的要求,需对原有引风机进行改造。在保持原有风量(1#~3#锅炉引风机风量197000m3/h,4#~5#锅炉引风机风量260000m3/h,6#~7#锅炉引风机风量280000m3/h不变的情况下,将1#~5#锅炉引风机风压从4.8kPa改至7.2kPa,6#~7#锅炉引风机风压从4.5kPa改至7.0kPa。

3 运行性能分析

本次改造通过在SCR反应器入口处和出口处增添温度测试点及NOx质量浓度测试点,分析了不同过量空气系数对锅炉NOx转化率影响、不同烟气温度对SCR反应器脱硝效率的影响、不同烟气温度对SCR反应器氨逃逸率的影响和不同氨氮摩尔比对脱硝效率的影响,其结果如图1~图4所示。

由图1可知,随着空气过量系数的增加,NOx转化率逐渐升高,空气过量系数为1.4时,其最高转化率约为60%。图2表明,随着SCR反应温度的增加,SCR脱硝效率呈现先增加后降低的趋势,约365℃时,脱硝效率最高。图3给出了氨氮摩尔比和氨逃逸率的关系,可以看出,温度为380℃时,氨的逃逸量较低,约为5×10-6;然而,随着反应温度的降低,氨逃逸呈现逐渐增加的趋势,特别是当氨氮摩尔比的较高时,氨逃逸量更多。图4为氨氮摩尔比与脱硝效率的关系图,可以看出,随着氨氮摩尔比的增加,脱硝效率逐渐升高,随着反应温度的增加,脱硝效率亦逐渐增加。通过调试分析得出,当温度控制在360℃左右,过量空气系数在0.9~1.0之间,氨氮摩尔比为1.2左右时,电厂SCR系统的脱硝效率能达到90%以上,实现烟气出口NOx质量浓度在45mg/Nm3以下,含氧量在6%~8%,出口SO2质量浓度15mg/Nm3以下,烟气出口温度为250~280℃,符合环保部门的排放指标。

4 经济效益与环境效益

本项目锅炉均为煤粉锅炉,采用低NOx燃烧加SCR联合脱硝技术,使烟气NOx排放质量浓度<50mg/Nm3,将原有电除尘器改造为布袋除尘器,使烟尘排放质量浓度<20mg/Nm3。本工程实施后NOx由改造前的10262t/a减少到1109t/a,每年可减少NOx排放量9153t。烟尘排放量由改造前的1685t/a减少到222t/a,每年减少烟尘排放量1463t。根据规定,每一污染当量征收标准为0.6元,本办法中规定NOx的污染当量值为0.95,烟尘的污染当量值为2.18。项目实施后,每年减少排污费用618.35万元,不仅大大改善了大气环境,带来良好的环境效益与社会效益,也为企业减少了巨额排污费用,达到了改造的目的。

5 结论

随着国家对污染物排放标准越来越严格,燃煤电厂烟气脱硝改造势在必行。对于一些老机组,设备老化,改造难度较大,脱硝技术对于不同电厂出现不同问题,很难达到理想脱硝效率。研究发现,随着空气过量系数的增加,NOx转化率逐渐升高。随着SCR反应温度的增加,SCR脱硝效率呈现先增加后降低的趋势。温度为380℃时,氨的逃逸量较低,约为5×10-6;然而,随着反应温度的降低,氨逃逸呈现逐渐增加的趋势。随着氨氮摩尔比的增加,脱硝效率逐渐升高,随着反应温度的增加,脱硝效率亦逐渐增加。改造后采用低NOx燃烧加SCR联合脱硝技术,脱硝效率达到90%以上,NOx出口质量浓度低于45mg/Nm3,符合环保部门的排放指标。

原标题:燃煤电站锅炉烟气脱硝改造及运行分析

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。
展开全文
打开北极星学社APP,阅读体验更佳
2
收藏
投稿

打开北极星学社APP查看更多相关报道

今日
本周
本月
新闻排行榜

打开北极星学社APP,阅读体验更佳
*点击空白区域关闭图片,
双指拖动可放大图片,单指拖动可移动图片哦