摘要:针对某电厂660MW超临界机组在脱硝系统投运时喷氨自动不能正常投入,无法精确控制脱硝出口NOx排放浓度的问题,分析了喷氨自动控制的影响因素,对现有喷氨自动控制采取移位选取不当的烟气自动监控系统(CEMS)取样测点、调整自动吹扫/标定时间及每路进氨支管手阀的开度等进行优化,优化控制系统逻辑:

首页 > 大气治理 > 脱硫脱硝 > 烟气脱硝 > 技术 > 正文

SCR烟气脱硝喷氨自动控制分析及优化 1+1

2019-01-09 11:32 来源: 热控圈 

摘要:针对某电厂660MW超临界机组在脱硝系统投运时喷氨自动不能正常投入,无法精确控制脱硝出口NOx排放浓度的问题,分析了喷氨自动控制的影响因素,对现有喷氨自动控制采取移位选取不当的烟气自动监控系统(CEMS)取样测点、调整自动吹扫/标定时间及每路进氨支管手阀的开度等进行优化,优化控制系统逻辑:主调控制回路不再修正摩尔比,副调控制回路在得到喷氨流量后加上人员手动偏置量,优化后脱硝喷氨自动调节可以长时间正常投入,出口NOx排放浓度满足了环保达标排放要求。

某电厂2×660MW超临界燃煤机组,为满足大气污染物环保排放要求,先后对2台机组实施了脱硝改造,采用选择性催化还原(SCR)法进行脱硝,控制系统采用可编程逻辑控制器(PLC)控制,接入辅网进行操作调整。

2台机组脱硝系统在投入运行的过程中,由于PLC实现复杂自动控制的局限性,加之现场设备及脱硝喷氨自动控制设计的不完善,导致喷氨自动无法正常投入,完全依靠运行人员手动控制,无法精确控制脱硝出口NOx排放浓度,也增大了运行人员的工作强度。下面对脱硝喷氨自动控制系统存在的问题进行深入分析并优化。

1 SCR脱硝基本原理

燃煤电厂锅炉产生的NOx主要来源于燃料型NOx和热力型NOx。根据NOx生成机理,控制NOx的技术主要包括燃烧时尽量避免NOx的生成技术和NOx生成后的烟气脱除技术。SCR技术是应用最为广泛的烟气脱硝技术,采用NH3作还原剂,烟气中NOx在经过SCR反应器时,在催化剂的作用下被还原成无害的N2和H2O。烟气中的NOx主要有NO和NO2,其中NO占95%左右,其余的是NO2。

要实现高效率脱硝,喷氨流量的控制至关重要。若喷氨量超过需求量,则NH3氧化等副反应的反应速率将增大,降低NOx的脱除效率,同时形成有害的副产品,即硫酸铵(NH4)2SO4和硫酸氢铵NH4HSO4,加剧对空气预热器换热元件的堵塞和腐蚀;若喷氨量小于需求量,则反应不充分,造成NOx排放超标。由于喷氨量主要由氨流量调节阀控制,因此为保证脱硝出口NOx排放浓度满足环保要求,控制氨逃逸率低于3×10-6mg/m3,提高脱硝系统喷氨自动控制的品质尤为重要。

2初始喷氨自动控制策略

该电厂原脱硝喷氨自动控制策略是摩尔比串级回路控制,与单回路比例-积分-微分(PID)相比,摩尔比串级回路控制相对复杂,该串级控制回路由主调和副调控制回路组成。

a.主调控制回路。利用脱硝反应时MNH3/MNOx摩尔比近似等于1的原理,使用烟气进口NOx质量浓度和烟气流量的乘积得到基本的NOx含量,再乘以二者摩尔比便可得到氨气需求量,在满足脱硝效率要求的情况下,设置二者摩尔比为0.84,同时进行脱硝出口NOx对二者摩尔比的修正调节(依据出口NOx质量浓度与设定值偏差进行PID调节),此外,在操作员站上设有摩尔比偏置,提供了摩尔比的设定功能。

b.副调控制回路。根据修正的摩尔比计算得到所需要的氨气流量,其作为副调的给定值与氨气流量测量值的偏差经过副调调节后输出控制指令,控制喷氨流量调节阀开度,改变喷氨量大小,最终将出口NOx质量浓度控制在设定值范围内。

3喷氨自动控制影响因素分析及优化

初始逻辑设计虽然采用了较为经典的控制策略,但是设计不完善,没有考虑更多的细节,同时由于PLC实现复杂的模拟量控制较为困难,所以脱硝喷氨自动一直无法正常投入,长时间依靠运行人员手动调节,在负荷变化较大时,脱硝出口NOx质量浓度得不到及时有效地控制,严重影响了NOx的达标排放。为解决该问题,使喷氨自动能够有效投入,达到良好的调节品质,全面分析喷氨自动控制的影响因素,并对现有喷氨自动控制进行优化改造。

3.1影响因素分析

a.系统延迟性。由于脱硝反应系统及取样测量系统的延迟性,使喷氨自动控制系统被控对象的响应延迟时间在2~3min,是典型的大滞后被控对象,这意味着喷氨调节阀动作后,出口NOx需要一段时间才会有变化,这使得调节的及时性受到制约。

b.入口NOx含量波动大。受燃烧调整、煤质变化、负荷变化频繁及启停磨等影响,脱硝入口NOx质量浓度变化大、变化快,由于脱硝反应区入口到出口的距离短,喷氨反应有一定的时间滞后,所以反应就不完全,出口NOx也会相应快速上升,导致超调。

c.NOx测量数值异常。脱硝烟气自动监控系统(CEMS)取样采用直抽法,系统处于负压状态,若取样管路有泄漏,氧量测量就会失准,导致经过氧量折标的NOx质量浓度异常;取样探头及管线堵塞,取样流量消失,分析仪表报故障,会使NOx数值失准;分析仪表吹扫/标定期间,NOx数值将保持不变,这些都会影响喷氨自动控制。

d.烟气流量计算不准。烟气流量通过燃料量计算而来,由于其参与喷氨需求量的计算,其计算的准确程度,将决定计算所得喷氨需求量与实际需求量偏差的大小,偏差太大,主调修正回路无法进行有效地修正调节,从而影响喷氨自动的投入及调节效果。

e.喷氨流量的稳定性差。喷氨流量采用节流孔板的方式测量,其测量数值受到孔板特性的影响,同时受到氨区供氨压力的影响,供氨压力通过机械减压阀和稳压罐调节,供氨压力不稳,波动较大,使喷氨流量测量值频繁发生变化,与阀门开度对应的稳定性差,对调节回路产生扰动,影响调节效果。

f.喷氨不均匀。喷氨不均匀会引起反应器出口NOx含量分布不均匀,进而导致出口NOx测量值不具有代表性,从而影响喷氨自动调节效果;脱硝CEMS取样测点位置选取不当,可能使取样探头处于涡流区,NOx测量数值不能正确反应实际变化,这些也影响喷氨自动的调节效果。

g.控制逻辑设计不完善。PLC实现复杂的模拟量控制较为困难,原有逻辑回路无前馈信号,没有对大延迟属性进行有针对性地优化;原有逻辑对摩尔比进行偏置,对运行人员来说,画面中无摩尔比显示,偏置调整不直观。

3.2优化方法

3.2.1脱硝喷氨自动控制的优化

根据分析结果,优化现有的脱硝喷氨自动控制系统,对脱硝进出口CEMS系统全面细致检查,测点选取不当的进行移位改造;合理调整自动吹扫/标定时间及间隔时间,防止脱硝进出口CEMS装置的吹扫时间重合,最大程度保证接收的NOx、O2含量等参数的真实性;通过喷氨格栅(AIG)喷氨优化调整试验,调整每路进氨支管手阀的开度,调整不同区域的喷氨量,最终达到喷氨均匀;对喷氨调节阀进行检修,并重新调试定位,使两侧阀门开度与流量特性尽量一致,并在分布式控制系统(DCS)中利用函数修正阀门特性。

此外,也优化了控制系统逻辑,由于PLC实现复杂的模拟量控制较为困难,利用电流信号隔离器,将与喷氨自动相关的参数测点同时引入PLC与DCS中,并在DCS中对喷氨自动控制进行逻辑组态,然后将调节阀自动指令再送回PLC输出,脱硝喷氨自动的投切、给定值设定、流量偏置等与自动相关的操作仍在原辅网画面进行,仅在DCS中进行逻辑运算。

将控制逻辑引入DCS后,对喷氨自动控制策略优化,优化后主体仍采用串级回路控制,基于出口的串级控制方式见图1。

21.jpg

3.2.2主调及副调控制回路的优化

主调控制回路不再修正摩尔比,而是根据出口NOx质量浓度与其设定值的偏差经PID调节输出,直接对计算出理论所需的喷氨流量进行修正(修正范围0.7~1.3)。理论所需的喷氨流量则是由燃料量所计算出的烟气量乘以入口NOx质量浓度与出口NOx设定值之差,再乘以二者摩尔比得到氨气需求量。

副调控制回路由主调回路修正后得到的喷氨流量,加上运行人员手动偏置量,作为副调的给定值,与喷氨流量测量值的偏差经过PID调节后输出自动控制指令,控制喷氨流量调节阀开度,改变喷氨量大小。为了减小系统迟延的影响,在控制系统中引入了变负荷前馈;另外,由于燃烧工况的变化会影响入口NOx质量浓度,当发现入口NOx质量浓度迅速上升,出口NOx质量浓度超过设定值时,调节已来不及,观察发现尾部烟道处烟气氧量测点,能提前反应入口NOx质量浓度的变化趋势,引入氧量信号作为前馈,来减少迟延与超调。

正常情况下通过脱硝系统出口NOx质量浓度来调节喷氨调门开度,从而调节喷氨流量,当出口分析仪进行吹扫/标定时,闭锁主调PID运算,保持原输出,减少超调;当氨逃逸率超过2×10-6mg/m3,副调回路闭锁,防止过量氨的喷入。

在喷氨调节系统自动调节时,通过观察曲线发现,喷氨调门开度基本在25%~55%就能满足不同负荷下脱硝效率的要求,结合阀门流量特性,同时为防止测点反应迟缓,造成调节阀过开或过关,所以限制喷氨调节阀开度自动指令在20%~70%进行调节,以免超调;手动操作时调门无开度限制,可在0~100%操作。

4优化后的效果

优化后的脱硝喷氨自动调节品质有了明显改善,基本满足机组各种参数运行工况的变化,自动调节可长期投入,出口NOx质量浓度基本能稳定在设定值的±20mg/m3范围以内,喷氨自动控制能满足运行要求,氨的逃逸率控制在3×10-6mg/m3内,减轻了运行人员的操作强度,使NOx排放浓度满足环保要求。

5结束语

通过对现有喷氨自动控制系统的优化,自动调节品质虽然有了明显改善,但是随着环保标准的日趋严格,以及超低排放改造的实施,对脱硝喷氨这种大延迟自动控制系统,传统的PID控制将很难满足现场控制要求,因此探索结合模糊控制、神经网络、史密斯预估等先进控制算法进行优化,是今后学习工作的一个方向,以期找到合理的控制策略,提高控制品质,满足脱硝自动控制的要求,为脱硝系统的安全、稳定和经济运行提供保障。(来源锅炉兄弟)

精彩导读

供氨调节门对火电厂脱硝系统的工况有直接影响,但某些情况下由于脱硝自控系统的“不接地气”而致使脱硝系统无法投入,并导致NOx超标。应通过对现场情况的认真分析,促进DCS组态优化,使脱硝系统保持较高的自动投入率,以符合电力生产的环保要求。

随着我国科技的不断进步,人们对于环境保护的认识也越来越深刻。同时,低碳环保理念的提出也使得火力发电厂在烟气脱硫脱硝技术的实施力度不断加大,这是走可持续发展道路的重要前提。目前我国的发电厂脱硝技术仍处于发展阶段,未来还有很长的一段路要走。

1.发电厂脱硝技术分析

(1)湿法烟气脱硝技术。湿法烟气脱硝技术的基本原理,运用湿法烟气脱硝计算进行脱硝时,在这个过程中降一氧化氮先转化差能二氧化氮,然后才可以进行继续脱硝,在这个过程中可以加入适量的水或是使用其它可以作为吸收物质来进行脱销,达到脱硝的目的。

使用此方法进行脱硝工作要注意在脱硝反应的局部进行此工作。分析比较脱硫与脱硝的各个方面可以发现,烟气脱硝技术要复杂于烟气脱硫技术,具有一定的特殊性,相关的科研人员在进行研究的过程中要格外注意这一点,不可将脱硫技术移植到脱硝技术中。

(2)干法烟气脱硝技术。干法烟气脱硝技术的主要原理,即在烟气脱硝的过程中应用气态反应剂,进而将烟气中的氮氧化物转化为氮气与水,从而达到脱硝的目的。在实际的脱硝过程中最主要化学反应为催化还原反应,此外,还可以应用氧化铜法进行脱硝处理。在我国现阶段的脱硝处理方法中,主要应用的还是干法烟气脱硝技术。然而即使脱硝的效率在一定的程度上得到了提升,但是成本的选择和应用均较复杂而且难度也较大。

2.火力发电机组的脱硝控制问题

火力发电机组的脱硝控制是把所收集到的所有信号进行相应的计算和处理,根据相应的规范和要求进行操作,并发出指令来控制喷氨的输出量,这样就可以对氮氧化物的含量的得到有效的控制。从目前看,我国的火力发电机组脱硝控制所使用的控制方法主要是串级控制,主回路一般是按照选择性催化还原脱硝系统氮氧化物的含量与出口氮氧化物的设定值,出口是可以作为反馈的。

将两者间的偏差引入到PI控制中,这样才可以得到氨氮化物比的系数。脱硝率和SCR进口氮氧化物含量是通过对副回路中的烟气流量的计算所的到的,同时可以计算出氨量的设置值,以实际的测量得到的液氨流量作为实际的反馈,两者之间的实际偏差引进到PI控制中,这样所得到的对喷氨调节阀的开启命令。

已备份的火力发电机组脱硝系统进行实际的投入使用以后做出了一定的优化设置,在氨量设定值计算的回路中,以机组负荷信号当作运算的前馈,进而缩短回路的反应时间。

火力发电机组脱硝控制采用的控制方法的一般特点是:副回路是粗条回路,主要要求是速度要快,并可以在一定程度上可以快速的控制干扰;副回路主要的控制量是主回路的输出和烟气的流量等,主要的目的是可以对氮氧化物在出口进行控制,而实际上进口的氮氧化物的浓度与烟气流量对被控量的影响要比出口氮氧化物的影响要快速。

其中,副回路的控制效果与主要的扰动量没有相关性质。出口氮氧化物的变化是由于氨量变化而引起的,这个过程还由反应器催化剂的相关性质有关。由于没有办法体现两侧烟气流量的偏差与低负荷时烟气流量计算的偏差很大,这样的问题都会在一定程度上影响喷氨量的自动控制。

3.对策措施

(1)针对自控。

PID模块控制对象与实际运行中所期望的控制目标之间的矛盾,利用机组停机机会进行相关参数设置值的更改,即:进入DCS组态环境,将自动控制下的控制对象由原先的“脱硝效率”改为“NOx含量”,这样就使自动控制目标值与运行人员所关注的考核目标相一致,一方面保证了电力生产的环保要求,另一方面也极大地方便了运行人员的操控。

(2)针对供氨调节门死区偏大问题,经细致查勘和说明书翻阅,发现供氨调节门阀门为Limitorque电动执行器,其死区其实是可以调整的(范围为1%-50%,默认2%)。由于导致供氨调节门不能自动运行(实质是可以自动运行的,但效果差)的要因是死区过大,所以进入系统相关菜单将死区设置为理论上可以达到的最小值(即由当前的2%调整为1%),以提升阀门对DCS指令的响应速率。

另外,因系统构成上是供氨调节门位于过滤器后面,这样一旦长时间运行,过滤器出现堵塞是大概率事件;万一过滤器有堵塞,直接影响的是液氨流量曲线对液氨调节门开度曲线的跟踪效果;所以在停炉机会下,不能遗忘对过滤器的清洗。

(3)现场烟气监测仪的自动维护功能对自控系统造成的扰动问题,显然可以归属于不同系统之间衔接不畅的情形。要从根本上解决该问题,需将烟气监测仪与供氨自动控制系统进行集成,但这样投资较大,停机时间过长。为了改善机组运行情况下供氨自控系统频繁崩溃的现状,只能考虑在不新增投入的前提下提升对DCS组态逻辑的利用程度。

具体实现:当DCS系统“感受”到烟气监测仪处于自我维护状态时,相关输出值非NOx真实含量,因此自控系统应停止调节,将供氨调节阀门开度锁定在监测仪表执行自我维护行为之前的开度;监测仪表完成自我维护后,自动调节系统应立即由“关闭调节”转为“开启调节”。以上处置可在最大程度上规避监测仪表运行对自控系统的影响。

自控系统模块运行:

1)MOXPODII模块是DCS中基于PID控制的自动调节模块。

2)CFK34XB104、CFK34XB101、CFK34XB106分别表征的是烟气监测仪的校准态、故障态和反吹态三个信号执行“或”运算(只要有一个为“真”就输出控制逻辑至供氨自控系统)。

3)ST_SEL模块起到选择开关的作用,具体来说,当S1为1时,VAL2执行输出(其值为设定值HSJ12AA100_SP),对于MOXPODII模块,因设定值SP和测量值PV相同,所以模块不执行自动调节;当S1为0时,VALl执行输出(其值为NOx测量值HSA20CQ103),则MOXPODII模块对设定值和测量值进行比较,并以两者偏差作反馈式调节。

(4)相关延伸。可以预见执行措施(1)-(3)后,能够在不对原系统大拆大建前提下大幅提升供氨调节门自动运行投入率,使脱硝工序的稳定性和可靠性得到跃增。当然这些措施从根本上讲是改良性的不可能百分百避免监测仪表对自控系统的干扰。

如果要彻底规避,一个可行的办法是多增一台在线监测仪表且与原仪表的自我维护时间错开,然后由DCS对两台仪表输出的NOx测量值进行综采:两台均正常工作时取它们的平均值;当一台自我维护时取另一台数值,这样就可使问题得到进一步改善。

4.结语

总体来说,随着环保期望的提升,火电厂在电力生产上被寄以更高的清洁要求。我们对600MW机组运行中出现的脱硝系统供氨控制自动运行投入困难的问题,通过层层梳理,分析了原因所在并提出了针对性应对措施,研究成果可作为同类问题解决的有效借鉴。


原标题:SCR烟气脱硝喷氨自动控制分析及优化 1+1

特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。
展开全文
打开北极星学社APP,阅读体验更佳
2
收藏
投稿

打开北极星学社APP查看更多相关报道

今日
本周
本月
新闻排行榜

打开北极星学社APP,阅读体验更佳