一、工艺原理broda根据化学自由能探索发现nh4+在缺氧条件下与no2-直接生成n2的可能,认为它是自然氮循环中的一个缺失的部分。
其实,污水中所含资源回收是存在轻重缓急的,例如,磷酸盐、有机物、余热能、再生水等应该是当前回收并加以利用的重点,而污水中的氮似乎不应刻意去强调回收,因为自然界存在着不以人的意志为转移的氮循环。...大气中氮气(n2)占比78%,无论是氮的自然循环还是人工循环,从大气中被固定到植物或残留在土壤、水体中的氮最终都会通过硝化/反硝化、甚至是厌氧氨氧化(anammox)而回归大气。
它们共同作为土壤生态系统的重要组成部分,在碳循环、氮循环等生物地球化学进程中起着不可替代的作用。
随着环境污染治理与缓解全球气候变化的新需求牵引,土壤污染修复和全球变化下土壤碳氮循环研究成为国际土壤科学的研究热点。...由于土壤微生物学研究成为国际土壤科学的研究前沿,其关注点转向养分元素的生物地球化学循环过程研究。
生物炭的多孔结构及吸附的营养物质为土壤微生物群落提供了合适的栖息环境,修复土壤生态系统健康,提高了微生物的数量和活性,尤其是与氮循环相关的微生物。
此外,如果危险废物不及时处理,危险废物中的有害物质将进入土壤,导致土壤中微生物的死亡,甚至会破坏周围的生态环境,影响自然界的碳氮循环,危害人们的健康。
1.2 环境中抗生素的危害及迁移 近年来,环境中不断被发现的抗生素引起了人们的极大关 注,一方面是由于它潜在的生态风险如对环境中微生物参与的 关键进程具有潜在的负面影响,如养分的再生、碳氮循环以及污 染物的降解等过程
1 工艺原理broda 根据热力学计算,在 20 世纪 70 年代提出了厌氧氨氧化的存在,认为它是自然氮循环中的一个缺失的部分。
荷兰比利时科学家探索下水道到餐桌的创新氮循环技术...这个“新”概念背后是污水处理的一种脱氮工艺——将氨氮直接转化成微生物蛋白质,跳过氮气转化这一步,形成一个抄近路的氮循环的升级模式 。
人们过去认为反硝化过程是全球氮循环(图1)中n2产生的唯一机制。图1土壤氮转化过程直到在废水处理体系中发现了一种新型的生成氮气的微生物过程,它被称为厌氧氨氧化(anammox)过程。
但是,大部分改良剂均会存在一定的限制范围,如天然矿物质改良剂储存量对大面积被污染土壤的修复有着一定限制;无机废气物质改良剂可抑制植物的生长,影响土壤的氮循环及微生物的呼吸等;有机固体废弃物相应的改良剂,
氮循环是全球生物地球化学循环的重要组成部分,也是生物圈内基本的物质循环之一。自然界中的氮绝大部分以氮气分子(n2)的形式存在于大气中。n2的化学性质不活泼,常温下很难与其他物质发生反应。
蓝藻是地球上最古老的生物之一,能够进行光合作用进而参与调控生物圈的碳氮循环。然而,在富营养化的水体中,蓝藻的过度繁殖导致水华,带来严重的经济和社会问题。...噬菌体不仅在细胞裂解,生化循环和水平基因转移过程中发挥作用,而且还控制细菌的群落结构和功能。
人为活化氮的数量成倍于自然生物固定氮量显著地改变了区域氮循环,给生态环境带来更大的压力。温室效应、霾、酸雨都与人类活动干扰下氮循环的改变有关。那么我国的水体受到氮污染了么?...中国正在由“低碳社会”迈入“低氮社会”“低碳社会(low-carbon society)”的理念已经深入人心,但如上文介绍,人类活动显著干扰氮循环后可能产生更为严重的不利影响,却一直没有引起社会各界的重视
有24%~67%的海洋氮气来源于厌氧氨氧化过程,在地球氮循环中占有重要地位,其主要为浮霉状菌目的浮霉状菌科和厌氧氨氧化科,《bergey’s manualof systematic bacteriology
在这之后他们进一步探究了联胺合成酶的结构,结合分子生物学实验验证了anammox的过程机理,并发现anammox细菌在自然界中广泛分布,是自然界氮循环中至关重要的一环 。...anammox现象的发现第一个对厌氧氨氧化现象进行探索的人是奥地利理论化学家engelbert broda,他在1977年发表关于氮循环的论文,基于热力学分析而指出自然界可能存在由微生物主导的氨氮与亚硝氮反应生成氮气的反应
值得注意的是当水体亚硝酸盐偏高,说明氮肥是比较充足的,不要再使用氮肥,加重水体氮循环负担,可以施加磷肥,达到以磷促氮的目的。
在缺氧状态下,它们利用体内的生物酶的作用,吸取外界的碳源作为能量,利用硝酸盐中的氧进行呼吸作用,同时把硝酸盐中的氮转化成氮气释放出去,这个过程在自然界中的氮气被生物生长利用的过程是反方向的,也是自然界中氮循环必不可少的一环
关于氮循环我们在公众号前面的《污水中的兄弟连-氮族》中进行了详细的介绍,活性污泥中的而微生物对污水中的氮的去除是这个氮循环的一部分,通过几个分步来完成的。我们来逐一看这几步。...在公众号前面的活性污泥的系列文章中提到,活性污泥中聚集大量的不同种类的微生物,这些微生物具有各种不同的特性,有一族群的微生物会对污水中各种氮进行比较明显的生物作用,它们是自然界氮循环链条中必不可缺少的一环
在经典的氮循环中,植物会通过固氮作用将氮气转化为用作农业种植的肥料,来生产用于动物消费的蛋白质生产。...其本质是直接将污水中的氨氮转化成微生物蛋白质,跳过氮气转化这一步,形成一个抄近路的氮循环的升级模式。这是一种可持续的蛋白质生产方式,它比传统经典方法耗能更少,并且将废物转化为高附加值的产品。
这种现象虽然难以确切地表明一定是anammox菌在起作用,但至少表明自然界的氮循环现象比我们想象的要远为复杂。
如图1所示,氮来源于大气,最终依靠氮循环依然回归大气。...众所周知,大气成分中78%均为氮气(n2)成分,无论是氮的自然循环还是人工循环,从大气中被固定到植物或残留在土壤、水体中的氮最终都会藉硝化/反硝化、甚至是厌氧氨氧化(anammox)而回归大气。
2微生物在氮循环中的作用养殖水体中的氮能促进或限制水产养殖生态系统中物质能量的转化,也是浮游植物生长限制性营养元素之一。微生物在氮循环中的作用:①氨化作用含氮有机物经微生物分解而产氨的过程。
氮循环是科学探究的前沿同时涉及水工艺的减排机制。aaas发表了厌氧氨氧化传统污水处理颠覆性理论,可以实现碳平衡和能量自给。...污泥处理处置不是技术不行,而要学会打通全产业链目前,我们国家对污泥处理处置的原则为安全环保、循环利用、节能降耗、因地制宜、稳妥可靠。
但这之后,该理论得到了广泛的认同,并且厌氧氨氧化菌在地球氮循环中也有了它们应有的位置。...它们对全球氮循环具有重要意义,也是污水处理中重要的细菌。厌氧氨氧化究竟有多热01目前在国内外水处理行业,厌氧氨氧化已经是家喻户晓的概念。