项目产生淋溶液直接回用于焚烧项目烟气冷却,蒸发消耗不外排;运输车辆冲洗废水依托陆丰市(东南)生活垃圾焚烧发电厂渗滤液处理站采用“调节池+预处理+厌氧反应器uasb+一级硝化反硝化+外置式mbr+nf纳滤膜
废水治理措施:现有项目配套建设一座高浓度污水处理站,采用“调节池+预处理+厌氧反应器uasb+一级硝化反硝化+外置式mbr+nf纳滤膜+ro反渗透膜”的工艺,设计能力为350t/d;另有一座低浓度污水处理站
项目估算投资额134768.4万元,日处理规模为20万m3,占地246亩,建设并提供日处理规模为20万m3的污水处理厂一座,采用“预处理+水解酸化+两级硝化/反硝化生物池+高效沉淀池+反硝化深床滤池”工艺
质量标准等内容:建设并提供日处理规模为20万m3的污水处理厂一座,采用“预处理+水解酸化+两级硝化/反硝化生物池+高效沉淀池+反硝化深床滤池”工艺。...项目估算投资额134768.4万元,日处理规模为20万m3,占地246亩,建设并提供日处理规模为20万m3的污水处理厂一座,采用“预处理+水解酸化+两级硝化/反硝化生物池+高效沉淀池+反硝化深床滤池”工艺
/反硝化+膜处理”系统工艺;出水全部厂内回用,实现零排放,水质达到《城市污水再生利用 工业用水水质》(gb/t19923-2005)中循环水回用标准。...烟气净化系统采用国际成熟的“sncr(选择性非催化还原法)+半干法+干法+活性炭吸附+袋式除尘器”净化工艺,烟气排放指标达到(gb18485-2014)《生活垃圾焚烧污染控制标准》;渗滤液处理采用“预处理+厌氧+硝化
图1总结了硝化/反硝化、pn/a以及pd/a脱氮过程以及对o2和cod消耗,3种脱氮过程以及o2和cod消耗量一目了然。...05 anammox过程本身固然并不产生强温室气体——氧化亚氮(n2o),但无论是短程硝化还是短程反硝化均涉及n2o释放问题。
渗滤液处理站采用"预处理+厌氧+两级硝化/反硝化+外置式超滤膜+纳滤膜(含浓缩液减量化)+反渗透膜(含dtro)工艺,处理后出水达到《城市污水再生利用工业用水水质标准》(gb/t19923-2005),
2、水环境影响本项目实施后,垃圾渗滤液、卸料平台、地面及料坑冲洗废水和初期雨水收集后进入渗滤液处理站,采用:“预处理+调节池+厌氧反应器+硝化反硝化+外置式mbr+tuf+ro反渗透膜+dtro”的处理工艺
同传统的a/o工艺相比,amon同步硝化反硝化工艺具有同步硝化-反硝化功能,供氧量降低25%,有机碳源需求降低60%; 氨氧化的反应过程,仅需部分半硝化,供氧量降低62.5%,脱氮不需有机碳源和碱;物料消耗和能耗低
4、a2/o工艺的优缺点优点:同时脱氮除磷;反硝化过程为硝化提供碱度;释磷及反硝化过程同时除去有机物;污泥沉降性能好,svi值一般均小于100。...混合液进入缺氧段后,反硝化菌利用污水中的有机物将回流液中的硝态氮还原为氮气释放到空气中,因此有机物浓度和硝态氮浓度都会大幅度降低。其次,该段可能发生磷的释放和吸收(反硝化除磷)反应,或者两者同时存在。
vd/v查表确定;s0——进水中bod5浓度,mg/l;se——出水中bod5浓度,mg/l;需要外加碳源反硝化去除的氮量的计算公式:n=nt0-ns-nte式中:n——需要外加碳源反硝化去除的氮量,mg
3.强化脱氮多级生物池+超滤(uf)+纳滤(nf)+有机分离膜该工艺适用于生活垃圾填埋场等场景,本工艺采用多点进水的两级硝化反硝化+超滤(uf)处理工艺,具有强化脱氮效果,极大提高生化脱氮处理效率,并降低了碳源使用量
03设计短程硝化反硝化技术,节省脱氮碳源,开发高效厌氧集装箱式渗滤液处理系统,实现安装便捷、高效稳定、长周期运行的目标。节能减排,低碳环保,助力实现“30·60”双碳目标。
在脱氮系统中,通过sv来判断硝化反硝化是否正常,主要是通过沉降比实验中是否有反硝化气泡的产生,一般在30分钟内就可以观察到,气泡产生的越多,说明反硝化越剧烈,甚至气泡会携带污泥成层上浮,说明硝化反硝化是正常进行的
目前,hbf工艺包的池内污泥浓度可达6g/l-10g/l,微生物大量增加,同步硝化反硝化的存在让污染物降解效率高,可减少30%以上的池容。...酶浮填料设置在好氧池与序批沉淀池内,好氧池的填料使得池内存在不同菌种的稳定立体生态位组合,硝化和反硝化过程可有机结合,脱氮程度高效稳定;序批沉淀区内增加的倾斜式酶浮填料,可以过滤出水从而保证较低的出水ss
除循环冷却水系统排水外项目产生的其他废水依托厂区现有的渗滤液处理站(处理规模为250t/d,采用“预处理+调节池+厌氧反应器ioc+两级硝化反硝化+外置式mbr生化处理系统+化学软化+tmf+ro膜系统
反硝化细菌反硝化细菌生长的最佳温度为25~35℃,而我国冬季气温通常低于20℃,低温成为冬季微生物反硝化脱氮的限制性因素。...也有学者开展了固定化反硝化细菌脱氮的研究,结果表明,经过固定化处理,提高了反硝化细菌对温度的适应性,固定化反硝化细菌对高浓度的铵离子和低温的耐受性增加。
1座,建筑面积203.63平方米;2、主要工艺流程:改造后采用“粗格栅提升泵站+细格栅旋流沉砂池+初沉池+多段多吸a0/改良型氧化沟+二沉池+硝化反硝化深床滤池+二氧化氯消毒”处理工艺,污泥采用“重力浓缩
对于新建项目,我们也在运用和尝试一些新技术和新工艺,比如厌氧氨氧化、短程硝化反硝化等,这些新工艺可以减低碳源的投加,减少运行费用。
单位反硝化速率 (sdnr) 测试显示,低 do 条件对反硝化率的贡献高于因内源呼吸产生的反硝化反应。这说明,后置反硝化很可能是依靠进水的内在碳源驱动的。
,在好氧阶段发生硝化反应后,即可在二沉池发生反硝化。...4、二沉池发生反硝化现象时随水流失反硝化的出现,主要是由于活性污泥沉降到二沉池底的时候,没有及时回流到曝气池,而活性污泥混合液离开曝气池时,由于浓度过高且曝气严重不足, 加之活性污泥混合液中富含氨氮、有机氮等
③含氮废水:设计水量7800m3/d,含高浓度氨氮和高浓度有机物,通过硝化、反硝化去除氨氮后,并入有机废水一同处理。...④高氮废水:设计水量700m3/d,含更高浓度氨氮和更高浓度有机物,通过硝化、反硝化去除氨氮后,进入含氮废水池合并再处理。
在活性污泥法系统中,大多数学者认为溶解氧应该控制在1.5~2.0mg/l内,低于0.5mg/l时硝化反应趋于停止。当前,有许多学者认为在低do(1.5mg/l)下可出现snd(同步硝化反硝化)现象。
回顾期内,本集团紧密围绕公司战略方向,聚焦减污降碳协同处理、碳监测与核算、臭氧氧气分离等技术研发领域,先后形成了短程硝化反硝化、生化处理e-biofas、芬顿流化床、冷冻结晶浓缩等多项技术工艺包,并于多个项目进行转化应用
1座,建筑面积203.63平方米;2、主要工艺流程:改造后采用“粗格栅提升泵站+细格栅旋流沉砂池+初沉池+多段多吸a0/改良型氧化沟+二沉池+硝化反硝化深床滤池+二氧化氯消毒”处理工艺,污泥采用“重力浓缩